Six1 and Six4 are essential for Gdnf expression in the metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric-tubule defects

نویسندگان

  • Hiroki Kobayashi
  • Kiyoshi Kawakami
  • Makoto Asashima
  • Ryuichi Nishinakamura
چکیده

Interaction between the ureteric-bud epithelium and the metanephric mesenchyme is important for kidney development. Six1 and Six4 are the mammalian homologs of Drosophila sine oculis, and they are coexpressed in the nephrogenic mesenchyme. Six1-deficient mice show varying kidney defects, while Six4-deficient mice have no apparent abnormalities. Here, we report Six1/Six4-deficient mice that we generated in order to elucidate the functions of Six4 in Six1-deficient kidney development. The Six1/Six4-deficient mice exhibited more severe kidney phenotypes than the Six1-deficient mice; kidney and ureter agenesis was observed in all the neonates examined. The Six1/Six4-deficient metanephric mesenchyme cells were directed toward kidney lineage but failed to express Pax2, Pax8, or Gdnf, whereas the expression of these genes was partially reduced or unchanged in the case of Six1 deficiency. Thus, Six4 cooperates with Six1 in the metanephric mesenchyme to regulate the level of Gdnf expression; this could explain the absence of the ureteric bud in the Six1/Six4-deficient mice. In contrast, Six1 deficiency alone caused defects in mesonephric-tubule formation, and these defects were not exacerbated in the Six1/Six4-deficient mesonephros. These results highlight the fact that Six1 and Six4 have collaborative functions in the metanephros but not in the mesonephros.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Six1 is required for the early organogenesis of mammalian kidney.

The murine Six gene family, homologous to Drosophila sine oculis (so) which encodes a homeodomain transcription factor, is composed of six members (Six1-6). Among the six members, only the Six2 gene has been previously shown to be expressed early in kidney development, but its function is unknown. We have recently found that the Six1 gene is also expressed in the kidney. In the developing kidne...

متن کامل

Disruption of Gen1 Causes Congenital Anomalies of the Kidney and Urinary Tract in Mice

Congenital anomalies of the kidney and urinary tract (CAKUT) are among the most common developmental defects in humans. Despite of several known CAKUT-related loci (HNF1B, PAX2, EYA1, etc.), the genetic etiology of CAKUT remains to be elucidated for most patients. In this study, we report that disruption of the Holliday Junction resolvase gene Gen1 leads to renal agenesis, duplex kidney, hydron...

متن کامل

Defects of urogenital development in mice lacking Emx2.

The homeobox gene Emx2 is a mouse homologue of a Drosophila head gap gene empty spiracles (ems) and is essential for the development of dorsal telencephalon (Yoshida, M., Suda, Y., Matsuo, I., Miyamoto, N., Takeda, N., Kuratani, S. and Aizawa, S. (1997) Development 124, 101-111). At the same time, Emx2 is expressed in the epithelial components of the developing urogenital system and, in Emx2 mu...

متن کامل

Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo.

In mammals, Six5, Six4 and Six1 genes are co-expressed during mouse myogenesis. Six4 and Six5 single knockout (KO) mice have no developmental defects, while Six1 KO mice die at birth and show multiple organ developmental defects. We have generated Six1Six4 double KO mice and show an aggravation of the phenotype previously reported for the single Six1 KO. Six1Six4 double KO mice are characterize...

متن کامل

Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis.

Antagonists act to restrict and negatively modulate the activity of secreted signals during progression of embryogenesis. In mouse embryos lacking the extra-cellular BMP antagonist gremlin 1 (Grem1), metanephric development is disrupted at the stage of initiating ureteric bud outgrowth. Treatment of mutant kidney rudiments in culture with recombinant gremlin 1 protein induces additional epithel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2007